UNDERGROUND
 DRAINAGE SPECIFICATION MANUAL
 2022

Contents

INTRODUCTION
STANDARDS
PRODUCTS
Underground Drainage
Underground Drainage Pipes
Perforated Pipes
Rocker Pipes
Couplers
Single \& Double Socket Bends
Long Radius Bends
Junctions
Gully \& Hopper Head Range
inspection Chambers
Access Fittings
Reducer/Adaptors
Channel Pipes \& Bends
Wall Seals
Underground Sewer
Underground Sewer Pipes
Couplers
Single Socket Bends
Junctions
Inspection Chambers
Inspection Chambers adaptors
Reducers
TECHNICAL INFORMATION
Authority
Standards
Composition
Biological \& Chemical Resistance
General Resistance
GENERAL INFORMATION
Storage 33
Handling 33
Transport 33
612-13
14-16
17-19
20
21-222324
252525
2627
28-293031
323232
323232
33
33
3 INSTALLATION 34
Installation - General points 34
4 Flow Properties 34
Choice of Gradients 35
Pipe sizing 36
5 5 37
Special Protections
Trench Preparation 38-39
Materials for Bedding 40
6 Ease of Compaction
6 Ease of Compaction 41
7 Pipe Laying 42
8-10 Special protection - settlement 43-44
11 44
Access to Drains 45-46
Preformed Inspection Chambers 47-48
Shallow Access Chambers 49
Access and Inspection Chambers 50
600 mm Inspection Chamber bases 51-52
Open Channel manholes 53-55
Backdrop Manhole construction 56
Rodding access 56
Head of drain rodding point 57
Universal Roddable Bottle Gully 58
Rodding access 59-60
Traditional gully assembly 61
Horizontal back inlet assembly 62
Bottle gully assembly 62
Soil Pipe connection (short radius) 63
Soil Pipe connection (long radius) 64
Rainwater Pipe connections 65
Pipe joints 66
Cutting 67
Push-fit jointing 67
Perforated pipe 68
Perforated rigid pipe 68
Connection to underground drainage 69
Wall Seals 70
Maintenance 71

Introduction

Vision Drainage provides a fully comprehensive range of underground drainage and sewerage systems.

Pipes and Fittings are produced in six (OD) diameters, ranging from 110 mm to 315 mm . The systems are manufactured under BS EN ISO 9001: 2015 certification and tested to the requirements of BS EN 13598-2, BS EN 13598-1, BS EN 1401-1 and BS EN 13476-2 and many items carry the BSI Kitemark.

The Vision Drainage specification manual provides information relating to dimensions, performance, illustration, design and fitting. The specification manual is a comprehensive manual for architect, specifier and builder alike.

AVAILABILITY

Vision Drainage underground systems are available from Drainfast Ltd, who operate from strategic locations in the South of England, London and the Midlands.

Standards

Vision Drainage systems are manufactured under the following British and European Standards:-

BS EN ISO 9001

Quality Management Systems
BS EN 1401-1

Plastic piping systems for non-pressure underground drainage and sewerage. Unplasticized poly(vinyl chloride) (PVC-U). Part 1: Specifications for pipes, fittings and the system. Nominal diameters 110 mm are SN8, 160 mm SN8, 200 mm and larger SN4.

BS EN 13598-1

Plastics piping systems for non-pressure underground drainage and sewerage. Unplasticized poly(vinyl chloride) (PVC-U), polypropylene (PP) and polyethylene (PE). Part 1: Specifications for ancillary fittings including shallow inspection chambers.

BS EN 13598-2

Plastics piping systems for non-pressure underground drainage and sewerage. Unplasticized poly(vinyl chloride) (PVC-U), polypropylene (PP) and polyethylene (PE). Part 2: Specifications for manholes and inspection chambers.

BS EN 13476-2

Plastics piping systems for non-pressure underground drainage and sewerage. Structured-wall piping systems of unplasticized poly(vinyl chloride) (PVC-U), polypropylene (PP) and polyethylene (PE). Specifications for pipes and fittings with smooth internal and external surface and the system, Type A. For nominal diameters 110 mm SN4/SN8, 160 mm SN4 and 200 mm SN4.

INSTALLATION STANDARDS

Drain and Sewer installations must be designed to comply with the following:
® The Building Regulations 2010, Approved Document H, Section H1
® Building (Scotland) Regulations 2004, Technical Handbook (Domestic \& Non-Domestic) Section 3: Environment
® Building Regulations (Northern Ireland) 2012, Technical Booklet N, Section 3
® Building Regulations 2010, Technical Guidance Document H, Section 1.3 (ROI)
Comprehensive guidance on the design of drain and sewer systems is given in BS EN 752:2017 and BS5955: Part 6: 1980 Code of Practice for the Installation of Unplasticized PVC pipework for Gravity Drains and Sewers.

Following the recommendations of these codes is also deemed necessary to satisfy the requirements of the above Building Regulations.

All information in this product guide is based on the above documents, which
should in any case be consulted for all installations.

Underground Drainage

PIPES

PIPE - PLAIN ENDED ϑ

PIPE - SINGLE SOCKET \ominus

PERFORATED PIPES

HALF PERFORATED PIPE - BLOWN SOCKET
(Pipe to BS 4660/BS 5481)

CODE	SIZE	LENGTH	WALL THICKNESS	HOLES PER M	\circ	\varnothing
4VP6SP	110 mm	6 m	3.2 mm	39	46°	6 mm
6VP6SP	160 mm	6 m	4.1 mm	52	36°	6 mm

ROCKER PIPES

ROCKER PIPE

COUPLERS

DOUBLE SOCKET (BS) COUPLER ϑ

CODE	SIZE	LENGTH
4VF20D	110 mm	135 mm
6VF20D	160 mm	175 mm

Material: PVC

DOUBLE SOCKET SLIP COUPLER θ

CODE	SIZE	LENGTH
4VF20DSC	110 mm	135 mm
6VF20DSC	160 mm	175 mm

Material: PVC

BENDS

DOUBLE SOCKET BEND $87.5^{\circ} \geqslant$

SINGLE SOCKET BEND 87.5°

θ

CODE	SIZE	X	Y
4VF90	110 mm	163 mm	150 mm
6VF90	160 mm	223 mm	230 mm

DOUBLE SOCKET BEND 45° 围

SINGLE SOCKET BEND 45°

θ

CODE	SIZE	X	Y
4VF45	110 mm	96 mm	142 mm
6VF45	160 mm	138 mm	228 mm

BENDS

DOUBLE SOCKET BEND 22½우

SINGLE SOCKET BEND $22^{1} 1_{2}{ }^{\circ}$

CODE	SIZE	X	Y
4VF22	110 mm	78 mm	149 mm
6VF22	160 mm	113 mm	234 mm

DOUBLE SOCKET BEND 11¼ ${ }^{\circ}$ అ

SINGLE SOCKET BEND 111/4ㅇ

CODE	SIZE	X	Y
4VF11	110 mm	68 mm	144 mm
6VF11	160 mm	103 mm	219 mm

BENDS

ADJUSTABLE BEND 0-45
CODE
SIZE
4VFA45
110 mm

DOUBLE SOCKET REST BEND (LONG RADIUS) 87.5° ©
CODE
SIZE
4VF90DRB
110 mm
X
241 mm

SINGLE SOCKET REST BEND 87.5°

CODE	SIZE	DEPTH	X	Y
4VF90RB	110 mm	130 mm	260 mm	285 mm

BENDS

LONG RADIUS BENDS PLAIN ENDED 87°

LONG RADIUS BENDS PLAIN ENDED 45°

LONG RADIUS BENDS PLAIN ENDED 30°

LONG RADIUS BENDS PLAIN ENDED 22.5°

JUNCTIONS

$871 / 2^{\circ}$ DOUBLE SOCKET T JUNCTION \geqslant

$871 / 2^{\circ}$ TRIPLE SOCKET T JUNCTION UNEQUAL ϑ

CODE	SIZE	X	Y
64VF90TT	$160 \mathrm{~mm} \times 110 \mathrm{~mm}$ dia.	223 mm	228 mm

\qquad
8712° DOUBLE SOCKET T JUNCTION UNEQUAL \geqslant

CODE	SIZE	X	Y
64VF90DT	$160 \mathrm{~mm} \times 110 \mathrm{~mm}$ dia.	223 mm	223 mm

JUNCTIONS

\qquad
45° TRIPLE SOCKET Y JUNCTION ϑ

45° DOUBLE SOCKET Y JUNCTION ϑ

45° TRIPLE SOCKET Y JUNCTION UNEQUAL ϑ

45° DOUBLE SOCKET Y JUNCTION UNEQUAL ϑ

GULLY RANGE

\qquad
110 mm DRAINAGE GULLY TRAP

CODE	SIZE	X	Y
4VG90	110 mm	142 mm	310 mm

Material: PP

110mm DRAINAGE 'P' LOW TRAPPED GULLY

110 mm SQUARE HOPPER HEAD

CODE	SIZE	X	Y
4VG92	110 mm	205 mm	168 mm

110mm RECTANGULAR HOPPER HEAD

CODE	SIZE	DEPTH	X	Y
4VG93	110 mm	168 mm	205 mm	255 mm

GULLY RANGE

110 mm SQUARE BOTTLE GULLY RODDABLE
Square top is 225 mm

CODE	SIZE	DEPTH	X	Y
4VG88	110 mm	190 mm	290 mm	247 mm

110mm CIRCULAR B/INLET BOTTLE GULLY RODDABLE

110mm SQUARE B/INLET BOTTLE GULLY RODDABLE
Square top is 225 mm

CODE	SIZE	DEPTH	X	Y
4VG88BI	110 mm	192 mm	290 mm	275 mm

GULLY RANGE

BOTTLE GULLY RAISING PIECE
Can be used with 4VG97, 4VG88, 4VG97BI \& 4VG88BI

CODE	SIZE	X
4VGRO	195 mm dia.	250 mm

SQUARE GULLY GRATES

CODE	SIZE	X	Y
150VGG	150 mm	150 mm	150 mm
198VGGS	198 mm	198 mm	198 mm

Material: aluminum

CIRCULAR GULLY GRATES

CODE	SIZE
175VGGC	175 mm dia.
200VGGC	200 mm dia.

Material: aluminum

SHALLOW ACCESS CHAMBERS

280 mm INSPECTION CHAMBER BASE 110mm INLET 90° CHANNEL
205mm invert

CODE	SIZE	DIAMETER (d)	Y
$\mathbf{4 V C 2 8 0 9 0}$	110 mm	280 mm	305 mm

280 mm CHAMBER SHAFT 185 mm HEIGHT
Incl seal

CODE	SIZE	DIAMETER (d)	INVERT (i)
4VC280S	110 mm	266 mm	185 mm

280 mm SQUARE DOUBLE SEAL COVER \& FRAME
For pedestrian areas only

CODE	SIZE	DIAMETER (d)
4VCF280S	110 mm	266 mm

Material: PVCu

At installation, we recommend that a copper impregnated grease should be
applied to the threads of the lid retaining screws for ease of removal.

INSPECTION CHAMBERS

450 mm INSPECTION CHAMBER BASE 160 mm CHANNEL
$2 \times 160 \mathrm{~mm}$ inlets \& $2 \times 110 \mathrm{~mm}$ inlets. Includes $2 \times 160 \mathrm{~mm}$ and $1 \times 110 \mathrm{~mm}$ socket plugs

CODE	SIZE	INVERT (i)	DIAMETER (d)
450VC6	160 mm	255 mm	450 mm

450mm INSPECTION CHAMBER SHAFT 300 mm HEIGHT

450mm CHAMBER SHAFT SEALING RING
For use with 450VCR

CODE	DIAMETER
450VCS	450 mm

RESTRICTOR RING

For use when chamber base invert is between 1.2 and 3 meters

ADOPTABLE INSPECTION CHAMBERS

450 mm INSPECTION CHAMBER BASE 160 mm CHANNEL
$2 \times 160 \mathrm{~mm}$ inlets \& $2 \times 110 \mathrm{~mm}$ inlets. Includes $2 \times 160 \mathrm{~mm}$ and $1 \times 110 \mathrm{~mm}$ socket plugs

450mm INSPECTION CHAMBER SHAFT 300mm HEIGHT

CODE	INVERT (i)	DIAMETER (d)
450VCRA	315 mm	450 mm

\qquad
450 mm CHAMBER SHAFT SEALING RING (replacement seal)
For use with 450VCRA
CODE DIAMETER

450VCSA 450 mm

INSPECTION CHAMBER COVERS

SECURED PLASTIC COVER AND FRAME TO EN124 A15 50KN
Suitable for domestic driveways

CODE	Y	DIAMETER (d)
450VCFS	545 mm	450 mm

DRAINAGE

DRAINAGE TEMPORARY SITE CAPS

CODE	SIZE	X	Y
4VF65	110 mm	118.5 mm	35.2 mm
CVF65	160 mm	159.5 mm	33 mm

Material: LDPE

DRAINAGE SOCKET PLUGS

CODE	SIZE	X	Y
4VF68	110 mm	126 mm	38 mm
6VF68	160 mm	180 mm	49 mm

Material: UPVc

SOIL PIPE MUSHROOM VENT COWL

CODE	SIZE	X	Y
4VFMUSH	110 mm	180 mm	80 mm

\qquad
RODDING EYES 45°

CODE	A	B	C	D	E	an
4VFRE	80 mm	185 mm	202 mm	109 mm	167 mm	120 mm
CVFRE	80 mm	272 mm	270 mm	160 mm	258 mm	189 mm

SQUARE RODDING EYE

CODE	SIZE	X	Y
4VFRES	110 mm	145 mm	50 mm

DRAINAGE

SQUARE SEALING PLATE

CODE	SIZE	LID	CLEAR OPENING	X
150VFSPS	150 mm	135 mm	$135 \times 135 \mathrm{~mm}$	22 mm

Material: aluminum

CIRCULAR SEALING PLATE

CODE	OVERALL	CLEAR	DIAMETER	X	
	DIAMETER	OPENING	OF LID		
140VFSPC	136 mm	103 mm	121 mm	23 mm	

Material: aluminum

DRAINAGE SCREWED ACCESS CAP

Material: UPVC

UNIVERSAL REDUCERS
Spigot to socket reducers

CODE	SIZE	X
64VR	$160 / 110 \mathrm{~mm}$	181 mm

DRAINAGE

CLAY TO PLASTIC ADAPTORS

FLEXIBLE SPIGOT \& SOCKET RAIN/WASTE ADAPTOR
Can be used to connect to both pipe spigot and a fitting socket

CODE	SIZE	W	X	Y	Z
4VF78	110 mm	108 mm	35 mm	60 mm	50 mm

RAINWATER ADAPTOR

Can be used to connect to both pipe spigot and a fitting socket

CODE	SIZE	A	B	C	D	E
4VF68RA	110 mm	139 mm	110 mm	43 mm	40 mm	68 mm

NON-RETURN VALVE - SINGLE SOCKET

CODE	SIZE	X	Y	Z
4VFNRV	110 mm	307 mm	230 mm	61 mm
6VFNRV	160 mm	337 mm	255 mm	74 mm

Material: UPVC

CHANNEL PIPES \& BENDS

OPEN CHANNEL

Material: UPVC

SLIPPER BEND 90° LEFT HAND

CODE	SIZE
4VF90L	110 mm

Material: UPVC

SLIPPER BEND 90° RIGHT HAND

CODE	SIZE
4VF90R	110 mm

Material: UPVC

SLIPPER BEND 30° LEFT HAND

CODE	SIZE
4VF30L	110 mm

Material: UPVC

SLIPPER BEND 30° RIGHT HAND

CODE	SIZE
4VF30R	110 mm

Material: UPVC

WALL SEALS

WALL SEALS

Compliant with BS EN681-5

CODE	SIZE	X	Y	Dia core drill required	
4VFWS	110 mm	142 mm	50 mm	140 mm	
CVFWS	160 mm	189 mm	50 mm	181 mm	

Material: EPDM rubber

Underground Sewer

PIPES

PIPE - SINGLE SOCKET \geqslant

CODE	SIZE	LENGTH	Y (SOCKET LENGTH)		
8VP3S	200 mm	3 m	110 mm		
8VP6S	200 mm	6 m	110 mm	$3>111$	
10VP3S	250 mm	3 m	140 mm	L,	$\square(0)$
10VP6S	250 mm	6 m	140 mm		
12VP3S	315 mm	3 m	155 mm		
12VP6S	315 mm	6 m	155mm		

COUPLERS

DOUBLE SOCKET COUPLER ϑ

CODE	SIZE	LENGTH
8VF20D	200 mm	217 mm
10VF20D	250 mm	254 mm
12VF20D	315 mm	297 mm

BENDS

SINGLE SOCKET BEND $87.5^{\circ} \ominus$

SINGLE SOCKET BEND 45° అ

CODE	SIZE	X	Y	
8VF45	200 mm	146 mm	148 mm	
10VF45	250 mm	183 mm	175 mm	
12VF45	315 mm	217 mm	218 mm	

SINGLE SOCKET BEND 30ㅇ

CODE	SIZE	X	Y		
8VF30	200 mm	130 mm	135 mm	\cdots	
10VF30	250 mm	171 mm	162 mm	\times	(0)
12VF30	315 mm	191 mm	192 mm		

SINGLE SOCKET BEND 15°
θ

CODE	SIZE	X	Y
8VF15	200 mm	118 mm	121 mm
10VF15	215 mm	153 mm	143 mm
12VF15	315 mm	167 mm	172 mm

JUNCTIONS

90° DOUBLE SOCKET T JUNCTION ϑ

90° DOUBLE SOCKET T JUNCTION UNEQUAL

45° DOUBLE SOCKET Y JUNCTION

CODE	SIZE	X	Y
8VF45DY	$200 \mathrm{~mm} \times 200 \mathrm{~mm}$ dia.	482 mm	337 mm
10VF45DY	$250 \mathrm{~mm} \times 250 \mathrm{~mm}$ dia.	603 mm	412 mm
12VF45DY	$315 \mathrm{~mm} \times 315 \mathrm{~mm}$ dia.	723 mm	506 mm

45° DOUBLE SOCKET Y JUNCTION UNEQUAL

INSPECTION CHAMBERS

Material: PP

600 mm INSPECTION CHAMBER BASE STRAIGHT CHANNEL

Compliant with EN13598-2 and with Sewers for Adoption 7th Edition (SfA7)
Adaptors/end caps are required for each connection

600mm INSPECTION CHAMBER BASE SHAFT

CODE	SIZE (h)	DIAMETER (d)
6VCSH1.5	1.5 m height	600 mm
6VCSH3	3 m height	600 mm
6VCSH6	6 m height	600 mm
Material: PE		

Material: PE

INSPECTION CHAMBERS

600mm SEALING RING			
CODE 6VCSHS	DIAMETER (d) 600 mm		
600mm RESTRICTOR CAP			
To suit 600 mm chamber base			
CODE 6VCR350	DIAMETER (d) 600 mm	OPENING 350 mm	2

INSPECTION CHAMBERS

UPVC OUTLET ADAPTORS TO UPVC SOCKET
To suit 600 mm chamber base. Spigot to Socket

CODE	SIZE	X	Y	Z	
6VCA672	$160-160 \mathrm{~mm}$	200 mm	222 mm	160.8 mm	
6VCA1072	$250-250 \mathrm{~mm}$	247 mm	248.5 mm	251 mm	

Material: PP

UPVC OUTLET ADAPTORS TO TWINWALL SOCKET

To suit 600 mm chamber base. Spigot to socket, adaptor comes with adaptor seals,
but requires twinwall seals

Material: PP

SPIGOT END CAPS

To suit 600 mm chamber base

CODE	SIZE	X	Y
6VCE669	160 mm	230 mm	100 mm
6VCE1069	250 mm	282.6 mm	110.5 mm
6VCE1269	315 mm	358.22 mm	136.45 mm

Material: PP

DRAINAGE

UPVC DRAINAGE SOCKET PLUGS

CODE	SIZE	X	Y		
8VF68	200 mm	223 mm	59 mm	\square	
10VF68	250 mm	282 mm	90 mm		
12VF68	315 mm	350 mm	93 mm		

UNIVERSAL REDUCERS

CODE	SIZE	x		
86 VR	200/160mm	213 mm	θ	
106VR	$250 / 160 \mathrm{~mm}$	264 mm		
108VR	250/200mm	269 mm		
126 VR	$315 / 160 \mathrm{~mm}$	174 mm	θ	
1210 VR	$315 / 250 \mathrm{~mm}$	311 mm	θ	

Technical Information

AUTHORITY

Vision Drainage systems satisfy the requirements of the following:-
® The Building Regulations 2010, Approved Document H
® Building (Scotland) Regulations 2004, Technical Handbook (Domestic \& Non-Domestic) Section 3: Environment
® Building Regulations (Northern Ireland) 2012, Technical Booklet N

- Building Regulations 2010, Technical Guidance Document H (ROI)

STANDARDS

Refer to page 4.

COMPOSITION

Extruded pipe sections and injection moulded fittings are made from PVCu and polypropylene compounds complying with the material requirements of the relevant British Standards. They contain the necessary processing additives, stabilisers and pigments to give products excellent appearance, durability and performance.

BIOLOGICAL AND CHEMICAL RESISTANCE

Polluted industrial atmospheres will not effect Vision Drainage systems. PVC is vermin and rot proof and resistant to most commonly occurring chemicals: notable exceptions however are solvents, including those incorporated in most timber preservatives.

GENERAL RESISTANCES

Expected action
G - Good/Excellent resistance to attack
P - Poor resistance to attack

SUBSTANCE
 EXPECTED ACTION

Mineral Acids (Diluted)
G
Mineral Acids (Concentrated) G
Alkalis G
Alcohol's G
Ketones P
Aromatic Hydrocarbons P
Chlorinated Hydrocarbons P
Greases and Oils G

General Information

STORAGE

The following recommendations relate to the storage of PVCu pipes under the normal climatic conditions of the United Kingdom.
a) Pipes should be stacked on a reasonably flat surface free from sharp projections, stones and other protuberances. Side supports should be provided at intervals of not more than 1.5 m and these supports should preferably consist of battens not less than 75 mm wide. However, if pipes are delivered in factory strapped bundles, no side supports are necessary.
b) Pipes should be uniformly supported throughout their length, if this is not possible timber battens at least 75 mm wide at spacings not greater than 1 m centres should be placed beneath the pipes. Preferably pipes of different sizes and wall thicknesses should be stacked separately. Where this is not possible the pipes with larger diameters and thicker walls should be at the bottom. It is preferable that pipes should not be stacked one inside the other.
c) If spigot and socket pipes are stacked, sockets should be placed at alternate ends of the stack with sockets protruding so that the pipes are evenly supported along their entire length. Pipe stacks should not exceed 7 layers with a maximum height of 2 m .

HANDLING

Pipes made from PVCu are strong, though lightweight and are therefore very easily handled. However, it is necessary to take care to prevent damage; in particular, pipes should not be thrown, dropped or dragged along. If pipes are moved by rolling it is necessary to support them along their length and properly restrain them on inclines. If pipes are loaded or unloaded by mechanical means (forklift, crane etc,) care should be taken to prevent damage. Pipes should be properly supported in two places when lifted. Preferably protected slings should be used, if metal chains and hooks are all that is available, padding should be placed between them and the pipes. If pipes are delivered stuffed, special care should be taken to avoid damage during unloading.

IMPORTANT

The impact strength of PVCu is reduced in cold weather during which time extra care must be taken to prevent site damage.

TRANSPORT

Vehicles with a flat bed should be used for the transport of pipes. The bed should be free from nails or other projections. Each pipe should be supported uniformly along its length. Vehicles should have adequate side supports at not more than 1.5 m centres and pipes should be well secured during transit. All uprights should be flat and free from sharp edges. When loading spigot/socket pipes, they should be stacked in alternate layers so that the sockets do not carry any load. Pipes should be loaded onto vehicles in such a way that any overhang does not exceed 1 m . Thick walled pipes must be loaded before thin walled pipes.

Installation

GENERAL

The ability of a rigid pipe to support the total load transmitted to it is established by reference to actual crushing tests to cause fracture. Flexible pipes such as those made from unplasticized PVC do not fracture under load but they are liable to deformation. The extent of this deformation depends largely upon the compaction of the immediate surrounding fill. For this reason, flexible pipes should always be surrounded with non-cohesive material. This surround should extend to the trench width in normal trench situations. The external loads (backfill and surcharge) imposed on a pipe of rigid material (such as vitrified clay, concrete, asbestos cement or cast iron) are supported mainly (sometimes wholly) by the resistance of the pipe to circumferential bending. On the other hand unplasticized PVC pipes, being relatively flexible, offer less resistance to circumferential deformation and rely partly on external support to resist deformation. Therefore, it is of primary importance for unplasticized PVC pipes that fill material, particularly the bedding and sidefill, should be properly compacted in order to prevent excessive deformation.

It is desirable that vertical deformation should be limited to 5% on completion of the backfilling, which can only be achieved by proper compaction of the backfill (Please refer to Codes of Practice BS 5955 and BS EN 752).

It is essential to avoid high stress concentrations and sharp objects such as large stones or flints which should not be allowed to come into contact with the surface of the pipe.

The flexible nature of unplasticized PVC pipes helps them to accommodate deformations resulting from ground movement or from other differential settlement under normal circumstances.

Except in special circumstances, e.g. at very shallow cover depths or where it is necessary to safeguard the foundations of existing structures, the use of concrete for bedding or surrounding the pipes is unnecessary. Figure 2 (in "Special Protection - Ground Loads" section) illustrates the use of concrete in special local circumstances.

Normally drainage pipework is laid in straight lines. However, in special circumstances and subject to approval it may sometimes be acceptable to "spring" the jointed pipes to a slight curve to avoid an obstacle, or to follow the curvature of a street. If this is done, and the joints are of the push-in type, care has to be taken not to spring the pipework to, too sharp a curve or the joints may be overstrained and fail later. The manufacturer should be consulted as to the minimum radius that can be accommodated in this way. Straining of the joints can be minimised by firmly backfilling a short length of pipe. The pipe should be anchored in this position by further backfilling before the next joint is made, and the process repeated as necessary. The trench may need to be widened on the curve to accommodate the pipe in its straight position. It is essential that the jointing is always carried out in the straight position.

FLOW PROPERTIES

The following is based upon information given in the code of practice BS 5955: Part 6: 1980.
For the purposes of calculating flow rates through PVCu pipes, reference should be made to the Colebrook-White equation. Figures have been derived using values for roughness (Ks) given in the "Hydraulic Research Station Charts", 4th edition (metric), 1978 and "Tables for the hydraulic design of pipes" (metric edition), 1977 for the sizes of PVCu pipes dealt with in this code. It is recommended that the information given in Figure $3(\mathrm{~b})$ is used for velocities less than $1 \mathrm{~m} / \mathrm{s}$.
These values of roughness are for guidance only and may need future modification in the light of continuing research work.

CHOICE OF GRADIENTS

Choice of gradients should be such as to maintain self-cleansing velocity under normal discharge conditions.

To achieve a satisfactory installation, diameter and gradient should be adequate for the maximum flow and competent supervision should be provided to ensure a high standard of pipe quality, laying, jointing and workmanship. This is particularly important when pipes are laid to flat gradients.

The following guidelines on gradients should be observed:
a) For flows of less than $1 \mathrm{~L} / \mathrm{s}$, pipes not exceeding 100 mm nominal bore at gradients not flatter than 1:40 have proved satisfactory.
b) Where the peak flow is more than $1 \mathrm{~L} / \mathrm{s}$, a 100 mm nominal bore pipe may be laid at a gradient not flatter than 1:80, provided that at least one WC is connected.
c) 150 mm nominal bore pipe may be laid at a gradient not flatter than 1:150, provided that at least five WC's are connected.
d) Experience has shown that for gradients flatter than those given in items a) and c), a high standard of design and workmanship is necessary if blockages are to be minimised. Where this has been achieved, gradients of $1: 130$ for 100 mm nominal bore pipes and 1:200 for 150 mm nominal bore pipes have been used successfully.

Where the available fall is less than that necessary to achieve the recommended gradient, increasing the pipe diameter particularly at low flows is not a satisfactory solution. It will lead to a reduction in velocity and depth of flow and an increase in the tendency for deposits to accumulate in the pipes.

Where it is expected that a drain may be affected by settlement, the selected gradient should be such as to ensure that a satisfactory fall will be maintained.

Research has shown that high velocities of sewage flow arising from steep gradients do not cause increased erosion of pipes or deposition of solids. In such situations drains should be laid at gradients, which are the most economical in excavation and cost. High velocities can, however, cause excessive turbulence at bends and manholes and lead to fouling. Where this occurs it can be mitigated for example by using long radius or sealed access fittings.

PIPE SIZING

PVCu PIPE SIZES COMPARED WITH TRADITIONAL PIPE SIZES
The diameters of Vision Drainage PVCu pipes increase in approximately 50 mm increments compared with the 75 mm generally for other materials, this enables pipes to be matched to design requirements more accurately and economically.

FIGURE 1. COMPARISON OF PIPE SIZES

SPECIAL PROTECTION - GROUND LOADS

Where a rigid pipe of:-
a) less than 150 mm diameter has less than 300 mm depth of cover, or
b) 150 mm or more diameter has less than 600 mm depth of cover,
it should be surrounded with concrete either 100 mm or the diameter of the pipe, whichever is greater, in thickness and have movement joints, at not more than 5 m centres.

Where a flexible pipe has less than 300 mm depth of cover under an area other than a vehicular area, it should have concrete paving slabs laid as bridging on granular or other flexible filling at least 75 mm above the top of the pipe. Where a flexible pipe has less than 600 mm depth of cover under a vehicular area it should have a reinforced concrete slab laid as bridging in a similar manner.

FIGURE 2. PROTECTION FOR FLEXIBLE PIPES

TRENCH PREPARATION

FIGURE 3. BEDDING FOR FLEXIBLE PIPES

1. Provision shall be required to prevent ground water flow in open trenches.
2. The barrel of the pipe shall have continuous bearing on the floor of the trench or the granular fill.

The trench should not be opened too long in advance of pipe laying and should be backfilled as soon as possible. It is essential to ensure that the sides of the trenches are adequately supported in accordance with the requirements of BS6031. To minimise a possible hazard, a trench should be open for the minimum time practicable.

At the crown of the pipe and for 300 mm , or one pipe diameter if greater, above it the width of the trench within any timbering should be as narrow as is practicable, but not less than the outside diameter of the pipe plus sufficient extra width (usually about 150 mm) on each side of the pipe to provide access for making the joints and placing and compacting sidefill. Above this level, the trench may be of any convenient width.

If the "as-dug" material is suitable for use as bedding, the bottom of the trench may be trimmed to form the pipe bed. Otherwise, the trench should be excavated to an adequate depth below the invert level of the pipe to allow for the necessary thickness of bedding material. The thickness of bedding under the barrel of the pipes should be a minimum of 100 mm , but in very wet or soft conditions or where the trench bottom is very irregular, it may be necessary to increase this thickness. Bedding should be properly compacted and finished so as to provide uniform support for the pipe. It is essential that bricks or other hard materials are not placed under the pipes for temporary or permanent support.

Material to be used for bedding and surrounding the pipes should be selected granular material, either available locally or, if necessary, brought to the site. Suitable materials are described in Table 1.

TABLE 1. SUITABLE MATERIAL FOR BEDDING AND SURROUNDING PIPES

Nominal pipe size (mm)	Material (complying with the requirements of BS882:Part 2)
110	10 mm , nominal single-sized aggregate
160	10 mm or 14 mm, nominal single-sized aggregate or 14 to 5 graded aggregate
220 and over	$10 \mathrm{~mm}, 14 \mathrm{~mm}$ or 20 mm, nominal single-sized aggregate, or 14 to 5 or 20 to 5 graded aggregate

Alternatively, granular material in accordance with the following materials for bedding recommendations and having a particular size not exceeding that in Table 1 depending on pipe size, may be used.

MATERIALS FOR BEDDING

1 VISUAL EXAMINATION

Examine the material and reject any which contains pieces with sharp edges.

2 PARTICLE SIZE

The maximum particle size should generally not exceed 20 mm . The presence of an occasional particle between 20 mm and 40 mm is acceptable provided the total quantity of such particles is only a very small fraction. If particles over 40 mm are present, the material should be rejected.

The following test will ensure compliance with this recommendation.
A weighed representative sample of the material, about 50 kg of the proposed material should be subdivided to give a 2 kg test sample which is sieved, using test sieves of 19 mm and 38 mm nominal mesh size (see BS410).

Note 1: To obtain a representative sample, about 50 kg of the proposed material should be heaped on a clean surface and divided with a spade down the middle. One of these halves should then be similarly divided, and so on until the required sample is left.

Note 2: In the sieving, clumps of material that break up under light finger pressure may be helped through the sieve, but considerable force should not be used to squeeze oversize clumps through the mesh.

The material is not recommended if:
a) any particles are retained on the 38 mm sieve, or
b) more than 5% by mass of the sample is retained on the 19 mm sieve.

EASE OF COMPACTION

I) APPARATUS:

The following apparatus is required
a) Open-ended cylinder 250 mm long and $150 \pm 6 \mathrm{~mm}$ internal diameter (160 mm diameter unplastisized PVC pipe is suitable)
b) Metal rammer with striking face 40 mm diameter and weighing $1.0 \pm 0.1 \mathrm{~kg}$
c) Rule

II) PROCEDURE

Obtain a representative sample (note 1) more than sufficient to fill the cylinder (about 11kg). It is important that the moisture content of the sample should not differ materially from that of the main body of material at the time of its use in the trench.

Place the cylinder on a firm flat surface and gently pour the sample material into it, loosely and without tamping. Strike off the top surface level with the top of the cylinder and remove all surplus spilled material. Lift the cylinder clear of its contents and place on a fresh area of flat surface. Place about one quarter of the contents back in the cylinder and tamp vigorously with the metal rammer until no further compaction can be obtained. Repeat with the second quarter, tamping as before, and so on for the third and fourth quarter, tamping the final surface as level as possible.

Measure down from the top of the cylinder to the surface of the compacted material. This distance in millimetres divided by the height of the cylinder $(250 \mathrm{~mm})$ is referred to as the "compaction fraction".

INTERPRETATION OF RESULTS

TABLE 2.

Compaction fraction (equivalent measurement from the top of the cylinder, mm)	Suitability for use
$<0.20(50)$	Material Suitable
	Material may be suitable for applications other than installation carried out in compliance with the Civil Engineering Specification for the Water Industry but requires extra care in compaction. Not suitable if the ground is subjected to waterlogged conditions after laying.
$>0.20<0.3$ (50 to 75)	Material Unsuitable
$>0.3(75)$	

PIPE LAYING

Unlike rigid pipes, pipes made from "flexible material" such as PVCu cannot be classified by their "crushing strength" but the fact that they are flexible does enable PVCu pipes to withstand forces from external loads and ground movement.

When a vertical load is imposed on a "flexible pipe" the resulting horizontal force is transmitted to the undisturbed trench wall by the sidefill. Any deflection of the pipe will cease when the horizontal reaction of the sidefill corresponds to the transmitted vertical load and a state of equilibrium is reached.

FIGURE 4. MAXIMUM AND MINIMUM RECOMMENDED DEPTHS

SPECIAL PROTECTION - SETTLEMENT

A drain which runs under a building should be surrounded by at least 100 mm of granular or other flexible filling.

It is recommended that a drain, which passes through a wall or foundation, should either:-
a) pass through an opening giving at least 50 mm clearance all round as shown in Fig 5(a); or
b) be built in with, on each side, flexible joints within 150 mm and rocker pipes of maximum length 600 mm as shown in Fig 5(b)
c) wall protection sleeves are available shown Fig 5(c).

FIGURE 5. PIPES PENETRATING WALLS
(a)

Arched or lintelled opening to give
50 mm space all round the pipe

Mask openings on both sides of the wall with rigid sheet material to prevent entry of fill or vermin

(c)

Wall protection sleeve bedded in wall with joints formed within 300 mm of either wall face

A drain which is at a level lower than the foundations of a building:-
i) Where the trench is within 1 m of the foundations, it should be filled with concrete up to the level of the underside of the foundations; or
ii) where the trench is more than 1 m from the foundations, it should be filled with concrete to a level, below the level of the underside of the foundations, equal to the distance from the foundations less 150 mm .

Flexible pipes must be wrapped in polythene before surrounding in concrete. The minimum thickness of the concrete surround should be 150 mm or the diameter of the pipe, whichever is greater.
(Note: where a drain is to pass under a foundation it should be supported on piles, or where the ground is unstable, specialist advice should be sought on the required protective measures).

SPECIAL PROTECTION - SURCHARGING

Where a drain is liable to surcharge, protective measures as described in standard BS EN 752 should be used.

ACCESS TO DRAINS

Access must be provided to drainage installations to allow for periodical maintenance, inspection and testing. Manholes, inspection chambers and shallow access chambers allow a system to be rodded in both directions whereas rodding eyes allow for only a downstream operation.

Basic principles state that every length of drain should be accessible for maintenance and rodding without the need to enter buildings. Access should be provided at the following points:
i) At every change in direction

ii) At the head of a drain

iii) At any change in gradient

iv) At any change in pipe diameter

Table 3 indicates the maximum recommended spacing between various types of access points, based on standard rodding techniques and the necessity to clear blockages.

Where two drains join together via a branch junction and no provision of access is made on that junction then access should be provided no more than 12 m from this point.

TABLE 3. MAXIMUM SPACING OF ACCESS POINTS

Distance to	To junction/ branch	To access fitting	To inspection chamber	To manhole
From start of external drain	m	m	m	m
From rodding point	-	12	22	45
From access fitting	12	12	22	45
From inspection chamber	12	12	22	45
From manhole	12	22	45	45
As per National Annex to BS EN 752:2017		-	45	90

[^0]
TABLE 4. MINIMUM DIMENSIONS FOR ACCESS FITTINGS AND CHAMBERS

Type	Depth to invert from cover level (m)	Internal sizes		Cover sizes	
		Length x width (mm x mm)	Circular (mm)	Length x width ($\mathrm{mm} \times \mathrm{mm}$)	Círcular (mm)
Rodding eye	-	As drain but min 100	-	-	same size as pipework ${ }^{1}$
Access fitting small 150 diameter 150×100 large 225×100	0.6 or less except where situated in a chamber	$\begin{aligned} & 150 \times 100 \\ & 150 \times 100 \\ & 225 \times 100 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 225 \end{aligned}$	$\begin{aligned} & 150 \times 100^{1} \\ & 150 \times 100^{1} \\ & 225 \times 100^{1} \end{aligned}$	same size as access fitting
Inspection chamber Shallow Deep	0.6 or less 1.2 or less >1.2	$\begin{aligned} & 225 \times 100 \\ & 450 \times 450 \\ & 450 \times 450 \end{aligned}$	$\begin{aligned} & 190^{2} \\ & 450 \\ & 450 \end{aligned}$	Min 430×430 Max 300×300^{3}	$\begin{gathered} 190^{2} \\ 430 \\ \text { access restricted } \\ \text { to max } 350^{3} \end{gathered}$

[^1]
PREFORMED INSPECTION CHAMBERS

Preformed inspection chambers can be used for invert depths of up to 3 m , dependent on local specifications and building regulations. If the invert depth is greater than 1.2 m this constitutes a no personnel entry Inspection Chamber and must have a restricted opening for health $\&$ safety reasons of less than 350 mm to prevent personnel entry. The Reducer ring, code 450 VCR 350 , is available in such circumstances and should be fitted into the cover frame. The chamber should be placed on suitable compacted material so that it is evenly supported.

When the base is in position the bungs can be removed and pipes inserted as appropriate. The risers are then placed on the base to reach the desired invert. The top riser can be trimmed to suit finished ground level. It is recommended that the cover and frame are fitted at this point to stop any foreign matter from entering the chamber. Backfilling may then take place around the chamber base and the connecting pipes, using suitable granular material. Backfilling continues to within 160 mm of ground level. A concrete plinth is then cast, in which the cast iron cover and frame sit.

FIGURE 6a.

The straight through channel should be used for the main flow at all times as illustrated above. This reduces the likelihood of cross flow and helps show direction of flow for rodding purposes.

HOW TO INSTALL RISER SECTION

Step 1: Install the chamber base and ensure it is level

Step 2: Apply lubricant to the inner lip on the chamber base

Step 3: Fit seal on the bottom of the first riser section
Step 4: Apply lubricant to the seal and bottom of riser section
Step 5: Place the riser on top of the chamber base and line it up, then rotate 180 degrees in one direction and then back while applying a slight downwards pressure

Step 6: Ensuring the riser is centralised push it down firmly

Step 7: Repeat process for each riser section

Product codes - Chamber Base 450VC4 Sectional Riser 450VCR

Figure 6b illustrates some of the alternative configurations available when using pre-formed inspection chambers.

FIGURE 6b.

NB: When turning through $90^{\circ}, 2 N^{\circ} \times 45^{\circ}$ bends should be used as above, to incorporate the main channel throughout the change of direction.

TABLE 5. INSPECTION CHAMBER $450 \mathrm{~mm} \times 110 \mathrm{~mm}$ \& $450 \times 160 \mathrm{~mm}$ - KEY DIMENSIONS

INSPECTION CHAMBER - KEY DIMENSIONS (mm)			
	Standard		
Socket Diameter	110 mm	160 mm	
Chamber Base Diameter	450	450	
Chamber Base Product Code	$450 \mathrm{VC4}$	$450 \mathrm{VC6}$	
Invert Depth of Base	225	255	
Invert Depth of Riser	315	315	
Invert Depth of Base and 1 Riser	540	570	
Invert Depth of Base and 2 Risers	855	885	
Invert Depth of Base and 3 Risers	1170	1200	
Round Cover and Frame	33	33	
Square Cover and Frame	48	48	

NB: Restricted opening of 350 mm diameter at ground level must be employed for chambers deeper than 1.2 m

TABLE 6. SHALLOW ACCESS CHAMBER 280mm \& 315mm - KEY DIMENSIONS

SHALLOW ACCESS CHAMBER - KEY DIMENSIONS (mm)	
Socket Diameter	Standard 110 mm
Chamber Base Diameter	280
Chamber Base Product Code	$4 \mathrm{VC280}$
Invert Depth of Base	205
Invert Depth of Riser	185
Invert Depth of Base and 1 Riser	390
Invert Depth of Base and 2 Risers	575
Cover and Frame	20.5

SHALLOW ACCESS CHAMBERS

The Vision Drainage 280 mm dia Shallow Access Chambers are designed for use with 110 mm pipework and are suitable for inverts up to 600 mm .

The 280 mm Chamber range offers two different bases, code 4VC280 incorporating one 45° inlet on each side and code 4VC28090, which features a 90° change of direction of the main channel.

Chamber Risers for both assemblies incorporate ring seals that allow easy push fit joints between the base and each other. It is strongly recommended that lubricant is always used in making a ring seal joint. Each Riser adds 185 mm to the Chamber assembly, with a maximum of two risers to be used

The Cover and Frame code 4VCF280S, features a double seal and can be used internally, if required When used externally, location must be in a pedestrian area only. It is recommended that all frames are located in a concrete plinth for stability and to spread the loading when used in a driveway location.

All Covers and Frames are square and are easily incorporated into paving or tarmac.

FIGURE 7.

4VC280S
"

4VCF280S
(For pedestrian areas only)

ACCESS AND INSPECTION CHAMBERS

Ensure that the base is embedded on a suitable substrate. This should either be suitable "as dug" material or materials in accordance with BS EN 1610:2015.

Check that the spigot on the riser is free from imperfections such as dents, burrs or cracks.

Clean both the spigot on the riser and the seal to ensure that they are free from any dirt which may impede their function.

When fitting the seal to the riser be careful not to stretch the seal any more than is required to fit it into the recess.

Add some lubricant around the seal and run your thumb around the seal to both ensure that the seal is housed in its groove/recess and to wipe away any excess lubricant.

Place the riser on top of the base/riser to which it will be fitted. The riser should be positioned so that seal sits on top of the chamber/ riser below.

Position both hands diametrically opposed to one another and apply even pressure to push the riser downwards into the base/riser below until it is completely fitted. Ensure that the riser is inserted square to its axis and not fitted at an angle as this may push the seal out of its recess.

Check that the riser/base has no raised areas any deflection in front of the seal as this may indicate that the seal is dislodged.

Once the riser is in place, cable ties (or similar) can be used on the integral lugs on the side of both riser and bases. These are positioned between both base and riser or riser and riser in order to ensure that the riser cannot "pop out" of the base/riser below it during backfilling.

Care should be taken when backfilling so the chamber assembly is not disrupted by excessively or unequally backfilling. ${ }^{\text {a }}$

It is recommended that inspection chamber assemblies are water tested and visually inspected prior to backfill to ensure leak tightness. ${ }^{\text {ab }}{ }^{\text {b }}$

Further water testing is also recommended once installation is complete. ${ }^{\text {a.b }}$

[^2]
600 mm INSPECTION CHAMBERS

Our Vision 600 inspection chamber bases are manufactured for sewer and surface water applications. They can withstand B125 \& D400 loadings supported by a concrete plinth and cover \& frame. The chambers are suitable for adoptable and non-adoptable use, and compliant with Sewers for Adoption 7th edition. Our range follows the regulations BS EN 13598-2, SfA7 Type 3 and Building Regulations Part H1.

Key features include:

- lightweight
- fast installation: no wet trades required
- robust
- shaft can be easily cut to required length (maximum of 3 m for adoptable use, 5 m for non-adoptable use)

Preparation, Positioning \& Connections

Prepare and compact a 100 mm bed of granular material in the bottom of the trench. Then position the inspection chamber base on the bed. Check each outlet is facing in the correct direction to ensure water flow, and are free from dirt or grit. Use a standard jointing procedure to connect $150-315 \mathrm{~mm}$ pipe to the base, using the required adaptors for each outlet.

Backfill

Cover the top of shaft in order to prevent ingress of dirt or grit, then, using the same material as the bedding, backfill around the chamber base in 150 mm layers.

Preparing Inspection Chamber Shafts

Cut corrugated shaft to approx. invert depth of chamber (using a fine-toothed saw). Ensure sealing rings between shafts are seated correctly/not twisted. Clean inside of base socket and lubricate this entire area. Position shaft at 45° angle into base socket and push in manually.

Trim shaft/fit restriction access cap

Trim shaft to final height (using a fine-toothed saw) and make sure the sealing ring is located in the 1st rib from shaft top. It should be seated correctly/not twisted. Lubricate inside the 600 to 350 mm restrictor cap, position over top of shaft, and push in.

FIGURE 8. TYPICAL INSTALLATION DETAIL: VISION 600 INSPECTION CHAMBER

Set up of concrete ring

For A15 applications in domestic gardens or driveways, leave top of shaft clear and lay a 150 mm thick concrete collar around. Position A15 Cover and Frame and socket as illustrated.

For heavier duty applications in trafficked areas, ensure unit is at correct height and protect shaft by shuttering its external ribs (see figure 8). Install 150 mm thick pre-cast or situ concrete around the top of shaft with a minimum opening of 750 mm diameter - to ensure that any loads are dispersed away from the shaft. Position Ductile Iron B125 Cover and Frame on top of slab as illustrated in Figure 9. For a D400 Cover and Frame, follow the Highway Specification.

FIGURE 9. INSTALLATION DETAIL FOR B125 LOADING

N.B. Please see the Building Regulations 2015, Approved Document H for further information, including granular material that is suitable for backfill.

OPEN CHANNEL MANHOLES

Vision Drainage chamber bases can be used in the bottom of a constructed manhole arrangement. The chamber base is positioned carefully in concrete to give full support throughout its diameter. Benching is sloping upwards from the base to the manhole walls at a gradient of 1:12. All construction must be in accordance with BS EN 752, Figure 10.

FIGURE 10.

A large range of $1 / 2$ and $3 / 4$ channel fittings offer the contractor a wide choice of constructional methods.
Fittings are available in $110 \mathrm{~mm}, 160 \mathrm{~mm}$ and 200 mm diameters. Two systems are available
(i) Level invert system Figure 11
(ii) Stepped invert system Figure 12

A level invert system is advantageous when invert levels need to be accurate. The range consists of junctions, bends, tapers which have to be solvent welded into position. No solvent welding is required on a stepped invert system.

FIGURE 11. LEVEL INVERT SYSTEM
FIGURE 12. STEPPED INVERT SYSTEM

Solvent welding must be carried out in the following way to ensure a sound and lasting joint:
(i) All spigot ends must be square and chamfered
(ii) Both surfaces should be free from dirt and water
(iii) With a clean brush apply Solvent Cleaner to both surfaces and allow to dry
(iv) Again with a clean brush apply an even coat of Solvent Cement
(v) Immediately insert the coated spigot into the socket and hold in place for about a minute
N.B. A narrow cut-off pipe may be sprung into the joint to hold the assembly in position. See Figure 13, but it must be removed when the joint is set.

vision

FIGURE 13. SOLVENT WELDING

The full range of Vision Drainage Channel Fittings are supplied with a keyed surface, to ensure excellent adhesion to the concrete benching.

BACKDROP MANHOLE CONSTRUCTION

A backdrop installation is required when two or more pipes, at different invert levels, are to meet at one manhole. Minimum trench excavation is therefore needed to join the pipework together.

The vertical section of a backdrop can be constructed internally or externally.

INTERNAL CONSTRUCTION

To construct an internal backdrop as illustrated in Figure 14 use:
1 No 4VF64 - Screw Access Cover
1 No 4VF90TT - 87½0 Triple Socket Branch
1 No 4VF90 - Single Socket Bend $871_{1} 2^{\circ}$
section of pipe for vertical drop
The vertical section should be securely fixed to the manhole wall using double socket soil pipe bracket and held with stainless steel screws.

FIGURE 15. EXTERNAL BACKDROP

EXTERNAL INSTALLATION

The vertical section of the installation is this time outside the chamber wall. The fittings required to construct an external backdrop are as shown in Figure 15:
1 No 4VF64 - Screw Access Cover
1 No 4VF90TT - 871/2 Triple Socket Branch
1 No 4VF20D - Pipe Coupler
1 No 4VF90D - Double Socket Bend 871/2º
plus a suitable section of vertical pipe
Note: 160 mm installations may be constructed using similar 160 mm fittings.

RODDING ACCESS

When installed correctly, the use of rodding points can eliminate the need for expensive Inspection Chambers and Manholes, significantly reducing the cost of installation.

HEAD OF DRAIN RODDING POINT

A Rodding Point as shown in Figures 16 and 17 can be used at the head of a drain in place of an inspection chamber or manhole. The rodding eye itself is made from cast alloy and has a 110 mm spigot allowing easy connection to the system.

Being set at 45° it allows easy rodding of the system.

FIGURE 16. HEAD OF DRAIN RODDING POINT

NB Sealed square and socketed version of the
aluminium rodding point is also available code 4VFRE.

FIGURE 17.

Shows how Rodding Points can minimise the number of inspection chambers and manholes on a typical surface water application.

UNIVERSAL RODDABLE BOTTLE GULLY

The Vision Drainage Universal Roddable Bottle Gully, may be used with a wide range of grids and sealing plates. It may be rotated leaving the grid square to the wall thus giving a more direct line of drainage resulting in economy of fittings.

A full 100 mm diameter access, gained by the removal of the dip tube, enables a wide range of cleaning equipment to be used.

The unit can be used instead of a traditional gully assembly and in certain applications, can remove the need for an inspection chamber, use Figure 18.

FIGURE 18. HOW A RODDABLE BOTTLE GULLY CAN ELIMINATE THE USE OF INSPECTION CHAMBER OR MANHOLES

RODDING ACCESS

In areas where combined foul and surface water systems are permitted, the rainwater connections must be trapped. See Figure 19.

Concrete Floor Construction

FIGURE 19. TYPICAL LAYOUT USING RODDING ACCESS COMPONENTS

USEFUL INSTALLATION TIPS

- Always chamfer cut pipe and lubricate all plain ended spigots for perfect joints.
- Storm water connections are invariably less critical than those in the foul system. Therefore lay the foul drain system closest to the building and lay the storm system around this wherever possible.
- Where external soil stacks are connected to the side inlet of a preformed chamber, ensure that the distance between the two is a minimum of 750 mm to help prevent cross flow of solids onto the opposite benching.
- Where combined drainage systems are installed ensure each rainwater pipe is connected to a gully.
- Always use the main channel of a chamber at a change of direction of the main run.

FIGURE 20. TYPICAL INSTALLATION (ENGLAND \& WALES) - SURFACE WATER SYSTEM ONLY

TRADITIONAL GULLY ASSEMBLY

The Low Trap Gully can be supplied in basic assembled form with a wide range of bends offering a choice of outlet.

The hopper should be attached to the trap out of the ground, and the whole assembly should be placed on a ready-made concrete slab, connected to the main drain, and backfilled with a selected granular material.

If the assembly is not protected by pavings or concrete at ground level e.g. in a garden, then a concrete slab should be bedded above the outlet bend to prevent damage from garden implements, Figure 21.

FIGURE 21. TRADITIONAL GULLY ASSEMBLY

HORIZONTAL BACK INLET ASSEMBLY

Figure 22 shows the use of the Horizontal Back Inlet Hopper when collecting waste water from inside a building.

Gully risers can be used with the whole range of square hoppers and bottle gully when extra depth is necessary. The rest of the gully assembly is as the aforementioned installation.

FIGURE 22. HORIZONTAL BACK INLET ASSEMBLY

BOTTLE GULLY ASSEMBLY

The unique round to square adaptor enables the gully outlet to be rotated leaving the grid square to the wall thus giving a more direct line of drainage.

The base design allows the gully to stand freely on a firm base of bricks or concrete without additional support.

It has two bosses which will accept a 110 mm pipe when the need for the true back inlet arises.
Installation is completed by bedding and surrounding the gully with selected granular material.

SOIL PIPE CONNECTION (SHORT RADIUS)

Figures 23(a) and (b) show how to connect an internal soil stack to an underground drainage system using a two way knuckle bend.

FIGURE 23 (a). USUAL SOIL PIPE CONNECTION
Suitable where WC's are connected to the soil stack, the rest bend 4VF90DRB should be used.

FIGURE 23 (b). SOIL PIPE CONNECTION (SHORT RADIUS)
Suitable where WC's are not connected to the soil stack. The pipe is then taken to ground level and connected to the stack with a coupler.

SOIL PIPE CONNECTION (LONG RADIUS)

Figure 24 again shows the connection of underground drain to soil by the use of a long radius bend connected together with two couplers.

It is advisable to use a long radius bend when heavy or fast flows are expected e.g. flats (multi-storey dwellings).

FIGURE 24.

RAINWATER PIPE CONNECTIONS

If rainwater pipes are to be situated externally then connections can be made by fitting a rainwater pipe adaptor to a pipe and via a knuckle bend as shown in Figure 25. Should the system be combined the rainwater pipe would have to be dropped into a trap assembly similar to that shown in Figure 21.

FIGURE 25. RAINWATER PIPE CONNECTIONS

PIPE JOINTS

The Vision Drainage system includes adaptors to connect PVCu to clay or cast iron sockets or spigots. These connections are illustrated in Figures 26 and 27

FIGURE 26. PVCu STANDARD CLAY ADAPTOR (4VFC2P)

FIGURE 27. PVCu SUPER CLAY ADAPTOR (6VFC2P)

CUTTING

Pipes can be cut with a hand saw having 6-8 teeth per cm , held at a shallow angle and sawing with slow steady strokes. A file should be used to remove any swarf and a chamfer should be made around the full circumference of the pipe.

PUSH-FIT JOINTING

To ensure watertight jointing the following procedure should be followed

- Pipe ends should be cut square. Chamfer the end to approximately half the wall thickness and at an angle of about 15° using a file or rasp. Remove all swarf with a scraper or knife blade. Chamfers are moulded on spigot ends of all fittings.

- Check all seals, sockets on pipes and fittings and pipe ends, for a distance equivalent to socket depths, are clean.
- Apply lubricant around the pipe end or spigot end of fittings - not around the ring seals.
- Align components and push the pipe end or fitting spigot fully into the ring seal socket to the depth of entry mark; mark the pipe or fitting spigot at the socket face.

- Withdraw the pipe or spigot until the mark is 10 mm away from the socket face: this creates a thermal movement allowance within the socket.

Make a subsequent check to ensure that the expansion gap is not lost during further installation work.

PERFORATED PIPE

Perforated pipes are normally used in French drain applications, draining rainfall from paved or concreted areas such as roads, car parks, airfields etc. The camber of the paved or concreted area runs rainfall into the permeable fill above the perforated pipe. Highway drainage systems for example usually include French drains on both sides of the carriageway and in the central reservation.

PERFORATED RIGID PIPES

INSTALLATION OF PERFORATED RIGID PIPES AS A FRENCH DRAIN

- Install Perforated Pipes using selected permeable fill as bedding, sidefill and backfill material, Figure 28.
- Do not compact the bedfill.

FIGURE 28. FRENCH DRAIN

SEPTIC TANK LEACH PIPE INSTALLATION USING PERFORATED RIGID PIPES

Vision Drainage Perforated Pipes may be used to dispose of septic tank effluent by sub-surface irrigation.

- Lay pipes in trenches with a uniform gradient not steeper than 1:200 from the septic tank outlet.
- Install unperforated Vision Drainage pipe with a fall of 1:30 for the first 3 metres. Installing an Inspection Chamber at this point will make it easier to monitor land drainage.
- Lay the pipes on, and surround them with a 150 mm layer of clinker, clean gravel or broken stone $20 \mathrm{~mm}-50 \mathrm{~mm}$ grade. Consult the septic tank manufacturer for advice on whether to position the perforations upwards or downwards in the trench.
- Place a layer of polythene sheet over the perforated pipe before backfilling
- Do not use pipes manufactured in accordance with BS4962 for disposing of septic tank effluent.

CONNECTION TO UNDERGROUND DRAINAGE

CONNECTION TO PVCu DRAIN SOCKET

CONNECTION TO CAST IRON DRAIN SOCKET

WALL SEALS

Before fitting wall seals, ensure that all surfaces are clean and the dimensions of the hole and pipe are accurate.

Firstly, insert the wall seal into the hole, please note that lubricant is not required for this. Then chamfer the edge of the connecting pipe and lubricate. Next, centre the end of the pipe and push it into the seal, ensuring that the pipe end is flush with the inner wall.

MAINTENANCE

When designed and installed correctly the underground Vision Drainage system is maintenance free.
Before any methods of access are adopted the Local Authority must be consulted to ascertain their own specific requirements.

Conventional rods, implements and specialist power assisted equipment may be used for cleaning a PVCu drain. It is necessary to ensure that cleaning equipment, particularly the end implement, will not cause damage to the pipe and fitting walls.

Should it become necessary to repair or extend a drainage system then use of a Vision Drainage Slip Coupler - Code 4VF20DSC/6VF20DSC can be made.

vision $($
 by drainfast

[^0]: The depth of any inspection chamber or manhole is determined by its minimum internal dimensions, since there must be adequate access or entry for rodding and maintenance. Details listed on Table 4.

[^1]: Reference: The Building Regulations 2010, Approved Document H.
 1 The clear opening may be reduced by 20 mm in order to provide proper support for the cover and frame.
 2 Drains up to 150 mm .
 3 A larger clear opening cover may be used in conjunction with a restricted access. The size is restricted for health \& safety reasons to deter entry.

[^2]: To be carried out in accordance with BS EN 1610:2015.

 - Water testing requirement on installations is subject to local/national building regulations.

